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Abstract- As network-based computer systems play increasingly vital roles in modern society, they have 
become the targets of malicious activities, which both industry and research community have brought more 
emphasis on solving network intrusion detection problems. Machine learning algorithms have proved to be an 
important tool in network intrusion detection problems. In this paper we have presented an application of 
AdaBoost-based machine learning algorithm in network intrusion detection. Network intrusion detection deals 
with the classification problem and AdaBoost-based algorithm have good classification accuracy. As well as 
AdaBoost-based algorithm have high detection rate and low false-alarm rate. This algorithm combines the weak 
classifiers for continuous features and weak classifiers for categorical features into a strong classifier. We have 
developed the AdaBoost-based NIDS and tested the system on KDDCup’99 and NSL-KDD intrusion detection 
datasets. A comparative performance evaluation of the NIDS on both the datasets are shown. The experimental 
results show that AdaBoost-based NIDS performance on NSL-KDD dataset is very good as compare to 
KDDCup’99 dataset. 
 

Index Terms- Machine Learning, Network Intrusion Detection, AdaBoost Algorithm, Detection Rate, 
False-alarm Rate. 

 

1. INTRODUCTION 

An intrusion is somebody (“hacker” or “cracker”) 
attempting to break into or misuse your system. The 
word “misuse” is broad and can reflect something 
severe as stealing confidential data to something 
minor such as misusing your email system for spam. 
An “Intrusion Detection System (IDS)” is a system 
for detecting such intrusions. There are two types of 
intrusion detection systems namely Host-based 
systems base their decisions on the information 
obtained from a single host and Network-based 
intrusion detection systems obtain data by monitoring 
the traffic in the network to which the hosts are 
connected [1]. 
 
1.1  Host-based Intrusion Detection Systems 
     Host-based IDS’s are installed on the host they are 
intended to monitor. The host can be a server, 
workstation or any networked device. HIDS’s install 
as a service or daemon or they modify the underlying 
operating systems kernel or application to gain first 
inspection authority. While a HIDS may include the 
ability to sniff network traffic intended for the 
monitored host. Application attacks can include 
memory modifications, maliciously crafted 
application requests, buffer overflows or file-
modification attempts. A HIDS can inspect each 
incoming command, looking for signs or 

maliciousness or simply track unauthorized file 
changes. 
 
1.2 Network-based Intrusion Detection Systems 
      Network-based IDS’s are work by capturing and 
analyzing network packets speeding by on the wire. 
Unlike, HIDS NIDS are designed to protect more than 
one host. They can protect a group of computer hosts, 
like a server farm, or monitor an entire network. 
Captured traffic is compared against protocol 
specifications and normal traffic trends or the packets 
payload data is examined for malicious content. If a 
security threat is noted, the event is logged and an 
alert is generated.  
 
1.3 Features of Network Intrusion Detection System 
    Some of the important features of a Network 
Intrusion Detection System are as follows [1], 

• It should be fault tolerant and run 
continuously with minimal human 
supervision. 

• A Network Intrusion Detection System must 
be able to recover from the crashes, either 
accidental or caused by malicious activity. 

• A Network Intrusion Detection System must 
be able to detect any modifications forced on 
the IDS by an attacker. 

• It should impose minimal overhead on the 
system. 
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• It should be configurable so as to accurately 
implement the security policies of the 
system. 

• It should be easy to use by the operator. 
• It should be capable to detect different types 

of attacks and must not recognize and 
legitimate activity as an attack. 

2. MATERIALS AND METHODS  

2.1 Boosting 
       Boosting is general method for improving the 
accuracy of any given learning algorithm. Boosting 
refers to a general and provably effective method of 
producing a very accurate prediction rule by 
combining rough and moderately inaccurate rules. 
Boosting has its roots in a theoretical framework for 
studying machine learning called the “PAC” learning 
model [8]. With the help of boosting a “weak” 
learning algorithm can be “boosted” into an arbitrarily 
accurate “strong” learning algorithm. Here decision 
stumps are used as weak learning learners. They can 
be combined into a strong learning algorithm for 
better classification accuracy [2]. 
 
2.2 Introduction to AdaBoost Algorithm 
        The AdaBoost algorithm, introduced in 1995 by 
Freund and Schapire [9], solved many of the practical 
difficulties of the earlier boosting algorithms. The 
algorithm takes as input a training set (x1, y1)… (xm, 
ym) where xi belongs to some domain or instance of 
space X, and each label yi is in some label set 
Y.Assume Y={-1,+1}. AdaBoost calls a given weak 
or base learning algorithm, here decision stump 
repeatedly in a series of rounds t=1… T.One of the 
main ideas of the algorithm is to maintain a 
distribution or set of weights over the training set. The 
weights of this distribution on training example i on 
round t is denoted Dt(i).Initially all weights are set 
equally, but on each round the weights of incorrectly 
classified examples are increased so that the weak 
learner is forced to focus on the hard examples in the 
training set. The weak learner’s job is to find a weak 
hypothesis [2], 
ht: X {-1, +1} appropriate for the distribution Dt.The 
goodness of a weak classifier is measured by its error, 

         (1) 
   AdaBoost works by combining several “votes”. 
Instead of using support vectors, AdaBoost uses weak 
learners. 

 
Fig.1: Neither h1 nor h2 is a perfect learner; AdaBoost combines 

them to obtain a “good” learner 
     Figure illustrates how AdaBoost combines two 
learners, h1 and h2. It initially chooses the learner that 
classifies more data correctly. In the next step, the 
data is re-weighted to increase the “importance” of 
misclassified samples. This process continues and at 
each step the weight of each weak learner among 
other learners is determined.  
 
2.3 Introduction to Weak Classifiers 
      Here decision stumps are used as weak classifiers. 
A decision stump is a decision tress with a root node 
and two leaf nodes. For each feature in the input data, 
a decision stump is constructed [3].The decision 
stumps for categorical features and decision stumps 
for continuous features are given as follows, 
 
2.3.1 Decision stumps for categorical features 
      A categorical feature f can only take finite discrete 
values. A decision stump corresponds to a partition of 
the range of f into two no overlapping subsets  and 

.Let X be the feature vector, and Xf be the 
component of X, which corresponds to feature f. Then, 
the decision stump corresponding to  and  is 
described as follows [3], 

                                       (2) 

Let and ε−hf denote the false-classification rates 
of the decision stump hf for normal and attack 
samples, respectively. The optimal subsets  and  
that correspond to the optimal decision stump ĥf are 
determined by minimizing the sum of the false 
classification rates for the normal and attack samples 
( ) =arg min 

( ) .     (3)                                               
 
2.3.2 Decision stumps for continuous features 
  For a continuous feature f, given a segmentation 
value θ, a decision stump hf  can be constructed as [3], 

                                           (4) 

Where Xf denotes the component of feature vector X, 
which corresponds to feature f. 
 
2.4 Working of the Algorithm 
The algorithm works as follows [3], 
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1) Initialize weights wi (1) (i = 1. . . n) satisfying        
 

 2) Observe the following for (t = 1. . . T). 
 a) Let εj be the sum of the weighted classification 
errors for the weak classifier hj 

εj=                                 (5) 
  where, 

I[γ] =                                               (6) 

Choose, from constructed weak classifiers, the weak 
classifier h (t) that minimizes the sum of the weighted 
classification errors 
h (t) = arg min εj                                                    (7) 
                    hj H     
 b) Calculate the sum of the weighted classification 
errors ε (t) for the chosen weak classifier h (t). 
  c) Let 
α (t) =½                                  (8) 
d) Update the weights by 

wi (t + 1) =                            (9) 

where Z (t) is a normalization factor, 
Z (t) =               (10) 
 3) The strong classifier is defined by 
H(x) = sign                              (11) 

3.  ARCHITECTURE OF NIDS USING 
ADABOOST-BASED ALGORITHM  

Considering the characteristics of the AdaBoost 
algorithm and characteristics of intrusion detection 
system, the model of the system consists of four parts: 
feature extraction, data labeling, and design of weak 
classifiers and construction of the strong classifier as 
shown in the figure 2 [3]. 
 

 
Fig. 2. Architecture of NIDS using AdaBoost algorithm. 

 3.1 Feature Extraction 
      For each network connection, contains 41 features 
and can be classified into three groups, 
3.1.1 Basic features 
    This category encapsulates all the attributes that 
can be extracted from a TCP/IP connection. 
3.1.2. Traffic Features 
    This category includes features that are computed 
with respect to a window interval and is divided into 
two groups, 

    a.”Same Host” features 
         These features examine only the connections in 
the past 2 seconds that have same destination host as 
the current connection, and calculate statistics related 
to protocol behavior, service etc. 
    b.”Same Service” features 
          These features examine only the connections in 
the past 2 seconds that have the same service as the 
current connection. 
 
 
3.1.3 Content Features 
       Unlike most of the DoS and probing attacks, the 
R2L and U2R attacks don’t have any intrusion 
patterns. This is because the DoS and probing attacks 
involves many connections to the same host in a very 
short period of time, however the R2L and U2R 
attacks are embedded in the data portions of the 
packets and normally involved only a single 
connection. To detect these kind of attacks, we need 
some features to be able to look for suspicious 
behavior in the data portion. These features are called 
content features. 
 
3.2 Data Labeling 
     The AdaBoost algorithm labels a set of data as 
either normal or an attack. The normal data samples 
are labeled as “+1” and attack data samples are 
labeled as “-1”. 
 
3.3 Design of Weak Classifiers 
   For classification of the intrusive data, the 
AdaBoost algorithm requires a group of weak 
classifiers. The weak classifier’s classification 
accuracy is relatively low. 
 
3.4 Construction of Strong Classifier 
     In AdaBoost algorithm a strong classifier is 
constructed by combining the weak classifiers. The 
strong classifier has high classification accuracy than 
each weak classifier. The strong classifier is then 
trained using training sample data. Then a test data 
sample is input to the strong classifier to test it as a 
“normal” or “attack” sample. 

4. KDDCUP’99 AND NSL-KDD DATASETS  

4. 1 KDD Cup’99 Dataset 
    This data set was derived from the 1998 DARPA 
Intrusion Detection Evaluation Program held by MIT 
Lincoln Labs. The dataset was created and simulated 
in a military network environment in which a typical 
U.S. Air Force LAN was subjected to simulated 
attacks. Raw TCP/IP dump data was gathered. The 
data is approximately 4 GB of compressed TCP dump 
data which took 7 weeks of network traffic and 
comprised about 5 million connection records. For 
each TCP/IP connection 41 various quantitative and 
qualitative features were extracted.KDD dataset is 
divided into training and testing records sets. The 
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attacks include the four most common categories of 
attacks [4], [5] given as follows, 
4.1. 1 Denial of Service Attacks (Dos) 
    It is an attack in which the attacker makes some 
computing or memory resource to busy or too full to 
handle legitimate requests, or denies legitimate users 
access to a machine. e.g. back, Neptune, land etc. 
4.1.2 User to Root Attack (U2R)  
     It is a class of exploit in which the attacker starts 
out with access to a normal user account on the 
system and is able to exploit some vulnerability to 
gain root access to the system. e.g. loadmodule, perl, 
ps etc. 
4.1.3 Remote to Login Attack (R2L) 
      This attack occurs when an attacker who has the 
ability to send packets to a machine over a network 
but who does not have an account on that machine 
exploits some vulnerability to gain local access as a 
user of that machine. e.g. ftpwrite, httptunnel, imap 
etc. 
4.1.4 Probing Attack 
      It is an attempt to gather information about a 
network of computers for the apparent purpose of 
circumventing its security controls. e.g.  nmap, satan, 
mscan etc. 
 
4.2 NSL-KDD Dataset 
    NSL-KDD is a dataset suggested to solve some of 
the inherent problems of the KDD’99 dataset [5], 
[6].The NSL-KDD dataset has the following 
advantages over the original KDD’99 dataset. 
i) It is not include redundant records in the training 
set, so the classifiers will not be biased towards more 
frequent records. 
ii) There are no duplicate records in the proposed test 
sets, therefore the performance of the learners are not 
biased by the methods which have better detection 
rates on the frequent records. 
iii) The number of selected records from each 
difficulty level group is inversely proportional to the 
percentage of the records in the original KDD dataset. 
As a result the classification rates of distinct machine 
learning methods vary in a wider range, which makes 
it more efficient to have an accurate evaluation of 
different learning techniques. 
iv) The number of records in the training and testing 
sets are reasonable, which makes it affordable to run 
the experiments on the complete set without the need 
to randomly select a small portion. 
v) Statistical observations one of the most important 
deficiencies in the KDD dataset is the huge number of 
redundant records, which causes the learning 
algorithms to be biased towards the frequent records 
and thus prevent them from learning unfrequent 
records which are usually more harmful to networks 
such as U2R and R2L attacks. 

Table I 
Statistics of redundant records in the KDD Training Dataset [5] 

 Original  
Records 

Distinct  
Records 

Reduction 
 Rate 

Attacks 3,925,650 262,178 93.32% 
Normal 972,781 812,814 16.44% 
Total 4,898,431 1,074,992 78.05% 
 
 
 
 
 
 

Table II 
Statistics of redundant records in the KDD testing Dataset [5] 

 Original 
Records 

Distinct 
Records 

Reduction 
Rate 

Attacks 250,436 29,378 88.26% 
Normal 60,591 47,911 20.92% 
Total 311,027 77,289 75.15% 
        
          Table I and Table II shows the statistics of the 
redundant records in the KDD Cup’99 training and 
testing datasets 

 
5. EXPERIMENTAL ANALYSIS         

The system is developed on Pentium IV Computer 
with 2.6 GHz and 1 GB RAM, using JDK 1.6. We 
utilize the KDDCup’99 and NSL-KDD datasets [4], 
[6] to test the Network Intrusion Detection System 
Using AdaBoost-based machine learning algorithm. 
We have taken 10% training and testing data from the 
KDDCup’99 data to test the system. The results are 
given in figure 4.We have taken 20 % of the NSL-
KDD training dataset as input to train the system and 
NSL-KDD testing dataset to test the system. The 
results are given in figure 5.The comparative 
performance of other learning algorithms with 
AdaBoost algorithm on KDDCup’99 and NSL-KDD 
datasets are given in figure 4 and figure 5. Figure 6 
illustrates the comparative performance of the system 
on KDDCup’99 and NSL-KDD datasets. Two indices 
are commonly used to judge the accuracy of a 
network intrusion detection system. One is detection 
rate (DR) [10], 

DR =                                              (12) 

And the other is false alarm rate: 
False Alarm Rate=1-                (13)                   
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Fig. 3. Detection results of other learning algorithms with 

AdaBoost-based NIDS on the KDDCup’99 test data. 

 
Fig. 4. Detection results of other learning algorithms with 

AdaBoost-based NIDS on the NSL-KDD test data. 

 
Fig. 5. Classification performance of AdaBoost –based NIDS on 

KDDCup’99 and NSL-KDD test data. 
 

 
Fig. 6. False-Alarm rates of the system on KDDCup’99 and NSL-

KDD datasets. 

The above figures show the classification accuracy of 
various learning algorithms and the AdaBoost-based 
NIDS on KDDCup’99 and NSL-KDD test dataset. 
The initial classification results of AdaBoost-based 
NIDS on KDDCup’99 and NSL-KDD test dataset are 
86.27% and 90.00% respectively, which are 
considerable with other learning algorithms. Figure 7 
shows the classification performance of AdaBoost-
based NIDS over KDDCup’99 and NSL-KDD test 
dataset .Due to the redundant records in the 
KDDCup’99 the system performance is biased and it 
gives only 86.27% of detection rate, whereas the    
performance of the system is increased to 90.00% 
detection rate on the NSL-KDD dataset. Hence NSL-
KDD is the good benchmark dataset to test the 
intrusion detection systems which gives the real 
performance of the systems without biasing. 

6. JUSTIFICATION DIFFERENCE 
1. The performance of AdaBoost-based NIDS is 
improved over the NSL-KDD dataset. The detection 
rate of the system over the KDDCup’99 dataset is 
86.27%, which is improved to 90.00% over the NSL-
KDD dataset, which proves that NSL-KDD dataset is 
a good benchmark dataset to test the intrusion 
detection systems. 
2. The false-alarm rate of the system is also improved 
over the NSL-KDD dataset. The false-alarm rate over 
the KDDCup’99 is 3.71 %, which is decreased to 
3.38% over the NSL-KDD dataset as shown in figure 
6. 
3. The number of records in the training and testing 
sets of NSL-KDD dataset are reasonable i.e. 125973 
records in the training set and 22544 records in the 
testing set, which makes it affordable to run the 
system on the complete set without the need to 
randomly select a small portion. 
 

7. CONCLUSION 
This paper deals with the initial design of the Network 
Intrusion Detection System based on AdaBoost-based 
machine learning algorithm. We have developed this 
system using Java and the KDDCup’99 and NSL-
KDD intrusion dataset. Our initial experimental 
results are considerable as compare with other 
learning algorithms evaluated on the KDDCup’99 and 
NSL-KDD test dataset. The system shows the better 
results of detection rate and false-alarm rate on the 
NSL-KDD dataset as compare to the KDDCup’99 
dataset. 
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