
International Journal of Research in Advent Technology, Vol.2, No.2, April 2014
E-ISSN: 2321-9637

101

A Comparative Performance Evaluation of Machine
Learning-Based NIDS on Benchmark Datasets

Dharmaraj R.Patil1, Tareek M.Pattewar2

Department of Computer Engineering, R.C.Patel Institute of Technology, Shirpur, M.S., India.
Email: dharmaraj.rcpit@gmail.com1

Department of Information Technology, R.C.Patel Institute of Technology, Shirpur, M.S., India.
Email: tareekpattewar@gmail.com2

Abstract- As network-based computer systems play increasingly vital roles in modern society, they have
become the targets of malicious activities, which both industry and research community have brought more
emphasis on solving network intrusion detection problems. Machine learning algorithms have proved to be an
important tool in network intrusion detection problems. In this paper we have presented an application of
AdaBoost-based machine learning algorithm in network intrusion detection. Network intrusion detection deals
with the classification problem and AdaBoost-based algorithm have good classification accuracy. As well as
AdaBoost-based algorithm have high detection rate and low false-alarm rate. This algorithm combines the weak
classifiers for continuous features and weak classifiers for categorical features into a strong classifier. We have
developed the AdaBoost-based NIDS and tested the system on KDDCup’99 and NSL-KDD intrusion detection
datasets. A comparative performance evaluation of the NIDS on both the datasets are shown. The experimental
results show that AdaBoost-based NIDS performance on NSL-KDD dataset is very good as compare to
KDDCup’99 dataset.

Index Terms- Machine Learning, Network Intrusion Detection, AdaBoost Algorithm, Detection Rate,
False-alarm Rate.

1. INTRODUCTION

An intrusion is somebody (“hacker” or “cracker”)
attempting to break into or misuse your system. The
word “misuse” is broad and can reflect something
severe as stealing confidential data to something
minor such as misusing your email system for spam.
An “Intrusion Detection System (IDS)” is a system
for detecting such intrusions. There are two types of
intrusion detection systems namely Host-based
systems base their decisions on the information
obtained from a single host and Network-based
intrusion detection systems obtain data by monitoring
the traffic in the network to which the hosts are
connected [1].

1.1 Host-based Intrusion Detection Systems
 Host-based IDS’s are installed on the host they are
intended to monitor. The host can be a server,
workstation or any networked device. HIDS’s install
as a service or daemon or they modify the underlying
operating systems kernel or application to gain first
inspection authority. While a HIDS may include the
ability to sniff network traffic intended for the
monitored host. Application attacks can include
memory modifications, maliciously crafted
application requests, buffer overflows or file-
modification attempts. A HIDS can inspect each
incoming command, looking for signs or

maliciousness or simply track unauthorized file
changes.

1.2 Network-based Intrusion Detection Systems
 Network-based IDS’s are work by capturing and
analyzing network packets speeding by on the wire.
Unlike, HIDS NIDS are designed to protect more than
one host. They can protect a group of computer hosts,
like a server farm, or monitor an entire network.
Captured traffic is compared against protocol
specifications and normal traffic trends or the packets
payload data is examined for malicious content. If a
security threat is noted, the event is logged and an
alert is generated.

1.3 Features of Network Intrusion Detection System
 Some of the important features of a Network
Intrusion Detection System are as follows [1],

• It should be fault tolerant and run
continuously with minimal human
supervision.

• A Network Intrusion Detection System must
be able to recover from the crashes, either
accidental or caused by malicious activity.

• A Network Intrusion Detection System must
be able to detect any modifications forced on
the IDS by an attacker.

• It should impose minimal overhead on the
system.

International Journal of Research in Advent Technology, Vol.2, No.2, April 2014
E-ISSN: 2321-9637

102

• It should be configurable so as to accurately
implement the security policies of the
system.

• It should be easy to use by the operator.
• It should be capable to detect different types

of attacks and must not recognize and
legitimate activity as an attack.

2. MATERIALS AND METHODS

2.1 Boosting
 Boosting is general method for improving the
accuracy of any given learning algorithm. Boosting
refers to a general and provably effective method of
producing a very accurate prediction rule by
combining rough and moderately inaccurate rules.
Boosting has its roots in a theoretical framework for
studying machine learning called the “PAC” learning
model [8]. With the help of boosting a “weak”
learning algorithm can be “boosted” into an arbitrarily
accurate “strong” learning algorithm. Here decision
stumps are used as weak learning learners. They can
be combined into a strong learning algorithm for
better classification accuracy [2].

2.2 Introduction to AdaBoost Algorithm
 The AdaBoost algorithm, introduced in 1995 by
Freund and Schapire [9], solved many of the practical
difficulties of the earlier boosting algorithms. The
algorithm takes as input a training set (x1, y1)… (xm,
ym) where xi belongs to some domain or instance of
space X, and each label yi is in some label set
Y.Assume Y={-1,+1}. AdaBoost calls a given weak
or base learning algorithm, here decision stump
repeatedly in a series of rounds t=1… T.One of the
main ideas of the algorithm is to maintain a
distribution or set of weights over the training set. The
weights of this distribution on training example i on
round t is denoted Dt(i).Initially all weights are set
equally, but on each round the weights of incorrectly
classified examples are increased so that the weak
learner is forced to focus on the hard examples in the
training set. The weak learner’s job is to find a weak
hypothesis [2],
ht: X {-1, +1} appropriate for the distribution Dt.The
goodness of a weak classifier is measured by its error,

 (1)
 AdaBoost works by combining several “votes”.
Instead of using support vectors, AdaBoost uses weak
learners.

Fig.1: Neither h1 nor h2 is a perfect learner; AdaBoost combines

them to obtain a “good” learner
 Figure illustrates how AdaBoost combines two
learners, h1 and h2. It initially chooses the learner that
classifies more data correctly. In the next step, the
data is re-weighted to increase the “importance” of
misclassified samples. This process continues and at
each step the weight of each weak learner among
other learners is determined.

2.3 Introduction to Weak Classifiers
 Here decision stumps are used as weak classifiers.
A decision stump is a decision tress with a root node
and two leaf nodes. For each feature in the input data,
a decision stump is constructed [3].The decision
stumps for categorical features and decision stumps
for continuous features are given as follows,

2.3.1 Decision stumps for categorical features
 A categorical feature f can only take finite discrete
values. A decision stump corresponds to a partition of
the range of f into two no overlapping subsets and

.Let X be the feature vector, and Xf be the
component of X, which corresponds to feature f. Then,
the decision stump corresponding to and is
described as follows [3],

 (2)

Let and ε−hf denote the false-classification rates
of the decision stump hf for normal and attack
samples, respectively. The optimal subsets and
that correspond to the optimal decision stump ĥf are
determined by minimizing the sum of the false
classification rates for the normal and attack samples
() =arg min

() . (3)

2.3.2 Decision stumps for continuous features
 For a continuous feature f, given a segmentation
value θ, a decision stump hf can be constructed as [3],

 (4)

Where Xf denotes the component of feature vector X,
which corresponds to feature f.

2.4 Working of the Algorithm
The algorithm works as follows [3],

International Journal of Research in Advent Technology, Vol.2, No.2, April 2014
E-ISSN: 2321-9637

103

1) Initialize weights wi (1) (i = 1. . . n) satisfying

 2) Observe the following for (t = 1. . . T).
 a) Let εj be the sum of the weighted classification
errors for the weak classifier hj

εj= (5)
 where,

I[γ] = (6)

Choose, from constructed weak classifiers, the weak
classifier h (t) that minimizes the sum of the weighted
classification errors
h (t) = arg min εj (7)
 hj H
 b) Calculate the sum of the weighted classification
errors ε (t) for the chosen weak classifier h (t).
 c) Let
α (t) =½ (8)
d) Update the weights by

wi (t + 1) = (9)

where Z (t) is a normalization factor,
Z (t) = (10)
 3) The strong classifier is defined by
H(x) = sign (11)

3. ARCHITECTURE OF NIDS USING
ADABOOST-BASED ALGORITHM

Considering the characteristics of the AdaBoost
algorithm and characteristics of intrusion detection
system, the model of the system consists of four parts:
feature extraction, data labeling, and design of weak
classifiers and construction of the strong classifier as
shown in the figure 2 [3].

Fig. 2. Architecture of NIDS using AdaBoost algorithm.

 3.1 Feature Extraction
 For each network connection, contains 41 features
and can be classified into three groups,
3.1.1 Basic features
 This category encapsulates all the attributes that
can be extracted from a TCP/IP connection.
3.1.2. Traffic Features
 This category includes features that are computed
with respect to a window interval and is divided into
two groups,

 a.”Same Host” features
 These features examine only the connections in
the past 2 seconds that have same destination host as
the current connection, and calculate statistics related
to protocol behavior, service etc.
 b.”Same Service” features
 These features examine only the connections in
the past 2 seconds that have the same service as the
current connection.

3.1.3 Content Features
 Unlike most of the DoS and probing attacks, the
R2L and U2R attacks don’t have any intrusion
patterns. This is because the DoS and probing attacks
involves many connections to the same host in a very
short period of time, however the R2L and U2R
attacks are embedded in the data portions of the
packets and normally involved only a single
connection. To detect these kind of attacks, we need
some features to be able to look for suspicious
behavior in the data portion. These features are called
content features.

3.2 Data Labeling
 The AdaBoost algorithm labels a set of data as
either normal or an attack. The normal data samples
are labeled as “+1” and attack data samples are
labeled as “-1”.

3.3 Design of Weak Classifiers
 For classification of the intrusive data, the
AdaBoost algorithm requires a group of weak
classifiers. The weak classifier’s classification
accuracy is relatively low.

3.4 Construction of Strong Classifier
 In AdaBoost algorithm a strong classifier is
constructed by combining the weak classifiers. The
strong classifier has high classification accuracy than
each weak classifier. The strong classifier is then
trained using training sample data. Then a test data
sample is input to the strong classifier to test it as a
“normal” or “attack” sample.

4. KDDCUP’99 AND NSL-KDD DATASETS

4. 1 KDD Cup’99 Dataset
 This data set was derived from the 1998 DARPA
Intrusion Detection Evaluation Program held by MIT
Lincoln Labs. The dataset was created and simulated
in a military network environment in which a typical
U.S. Air Force LAN was subjected to simulated
attacks. Raw TCP/IP dump data was gathered. The
data is approximately 4 GB of compressed TCP dump
data which took 7 weeks of network traffic and
comprised about 5 million connection records. For
each TCP/IP connection 41 various quantitative and
qualitative features were extracted.KDD dataset is
divided into training and testing records sets. The

International Journal of Research in Advent Technology, Vol.2, No.2, April 2014
E-ISSN: 2321-9637

104

attacks include the four most common categories of
attacks [4], [5] given as follows,
4.1. 1 Denial of Service Attacks (Dos)
 It is an attack in which the attacker makes some
computing or memory resource to busy or too full to
handle legitimate requests, or denies legitimate users
access to a machine. e.g. back, Neptune, land etc.
4.1.2 User to Root Attack (U2R)
 It is a class of exploit in which the attacker starts
out with access to a normal user account on the
system and is able to exploit some vulnerability to
gain root access to the system. e.g. loadmodule, perl,
ps etc.
4.1.3 Remote to Login Attack (R2L)
 This attack occurs when an attacker who has the
ability to send packets to a machine over a network
but who does not have an account on that machine
exploits some vulnerability to gain local access as a
user of that machine. e.g. ftpwrite, httptunnel, imap
etc.
4.1.4 Probing Attack
 It is an attempt to gather information about a
network of computers for the apparent purpose of
circumventing its security controls. e.g. nmap, satan,
mscan etc.

4.2 NSL-KDD Dataset
 NSL-KDD is a dataset suggested to solve some of
the inherent problems of the KDD’99 dataset [5],
[6].The NSL-KDD dataset has the following
advantages over the original KDD’99 dataset.
i) It is not include redundant records in the training
set, so the classifiers will not be biased towards more
frequent records.
ii) There are no duplicate records in the proposed test
sets, therefore the performance of the learners are not
biased by the methods which have better detection
rates on the frequent records.
iii) The number of selected records from each
difficulty level group is inversely proportional to the
percentage of the records in the original KDD dataset.
As a result the classification rates of distinct machine
learning methods vary in a wider range, which makes
it more efficient to have an accurate evaluation of
different learning techniques.
iv) The number of records in the training and testing
sets are reasonable, which makes it affordable to run
the experiments on the complete set without the need
to randomly select a small portion.
v) Statistical observations one of the most important
deficiencies in the KDD dataset is the huge number of
redundant records, which causes the learning
algorithms to be biased towards the frequent records
and thus prevent them from learning unfrequent
records which are usually more harmful to networks
such as U2R and R2L attacks.

Table I
Statistics of redundant records in the KDD Training Dataset [5]

 Original
Records

Distinct
Records

Reduction
 Rate

Attacks 3,925,650 262,178 93.32%
Normal 972,781 812,814 16.44%
Total 4,898,431 1,074,992 78.05%

Table II
Statistics of redundant records in the KDD testing Dataset [5]

 Original
Records

Distinct
Records

Reduction
Rate

Attacks 250,436 29,378 88.26%
Normal 60,591 47,911 20.92%
Total 311,027 77,289 75.15%

 Table I and Table II shows the statistics of the
redundant records in the KDD Cup’99 training and
testing datasets

5. EXPERIMENTAL ANALYSIS

The system is developed on Pentium IV Computer
with 2.6 GHz and 1 GB RAM, using JDK 1.6. We
utilize the KDDCup’99 and NSL-KDD datasets [4],
[6] to test the Network Intrusion Detection System
Using AdaBoost-based machine learning algorithm.
We have taken 10% training and testing data from the
KDDCup’99 data to test the system. The results are
given in figure 4.We have taken 20 % of the NSL-
KDD training dataset as input to train the system and
NSL-KDD testing dataset to test the system. The
results are given in figure 5.The comparative
performance of other learning algorithms with
AdaBoost algorithm on KDDCup’99 and NSL-KDD
datasets are given in figure 4 and figure 5. Figure 6
illustrates the comparative performance of the system
on KDDCup’99 and NSL-KDD datasets. Two indices
are commonly used to judge the accuracy of a
network intrusion detection system. One is detection
rate (DR) [10],

DR = (12)

And the other is false alarm rate:
False Alarm Rate=1- (13)

International Journal of Research in Advent Technology, Vol.2, No.2, April 2014
E-ISSN: 2321-9637

105

Fig. 3. Detection results of other learning algorithms with

AdaBoost-based NIDS on the KDDCup’99 test data.

Fig. 4. Detection results of other learning algorithms with

AdaBoost-based NIDS on the NSL-KDD test data.

Fig. 5. Classification performance of AdaBoost –based NIDS on

KDDCup’99 and NSL-KDD test data.

Fig. 6. False-Alarm rates of the system on KDDCup’99 and NSL-

KDD datasets.

The above figures show the classification accuracy of
various learning algorithms and the AdaBoost-based
NIDS on KDDCup’99 and NSL-KDD test dataset.
The initial classification results of AdaBoost-based
NIDS on KDDCup’99 and NSL-KDD test dataset are
86.27% and 90.00% respectively, which are
considerable with other learning algorithms. Figure 7
shows the classification performance of AdaBoost-
based NIDS over KDDCup’99 and NSL-KDD test
dataset .Due to the redundant records in the
KDDCup’99 the system performance is biased and it
gives only 86.27% of detection rate, whereas the
performance of the system is increased to 90.00%
detection rate on the NSL-KDD dataset. Hence NSL-
KDD is the good benchmark dataset to test the
intrusion detection systems which gives the real
performance of the systems without biasing.

6. JUSTIFICATION DIFFERENCE
1. The performance of AdaBoost-based NIDS is
improved over the NSL-KDD dataset. The detection
rate of the system over the KDDCup’99 dataset is
86.27%, which is improved to 90.00% over the NSL-
KDD dataset, which proves that NSL-KDD dataset is
a good benchmark dataset to test the intrusion
detection systems.
2. The false-alarm rate of the system is also improved
over the NSL-KDD dataset. The false-alarm rate over
the KDDCup’99 is 3.71 %, which is decreased to
3.38% over the NSL-KDD dataset as shown in figure
6.
3. The number of records in the training and testing
sets of NSL-KDD dataset are reasonable i.e. 125973
records in the training set and 22544 records in the
testing set, which makes it affordable to run the
system on the complete set without the need to
randomly select a small portion.

7. CONCLUSION
This paper deals with the initial design of the Network
Intrusion Detection System based on AdaBoost-based
machine learning algorithm. We have developed this
system using Java and the KDDCup’99 and NSL-
KDD intrusion dataset. Our initial experimental
results are considerable as compare with other
learning algorithms evaluated on the KDDCup’99 and
NSL-KDD test dataset. The system shows the better
results of detection rate and false-alarm rate on the
NSL-KDD dataset as compare to the KDDCup’99
dataset.

REFERENCES

[1] S Chebrolu, A. Abraham and J.P.
Thomos,“Feature deduction and Ensemble
design of Intrusion Detection Systems”,
Computer Security, Vol.24., Sept.2004.

[2] Y. Freund, R. E. Schapire, “A short Introduction
to Boosting”, Journal of Japanese Society for
Artificial Intelligence, Sept.1999

International Journal of Research in Advent Technology, Vol.2, No.2, April 2014
E-ISSN: 2321-9637

106

[3] Weiming Hu, Wei Hu, “AdaBoost-Based
Algorithm for Network Intrusion Detection”,
IEEE Transactions on Systems, Man and
Cybernetics-Part B, Cybernetics- Vol.38, April
2008.

 [4]KDDCup 1999 Data,
http://www.kdd.ics.uci.edu/databases/kddcup9
9 /kddup99.html, 1999.

[5] M. Tavallaee, E. Bagheri, W. Lu, and A.
Ghorbani, “A Detailed Analysis of the KDD
CUP 99 Data Set”, Second IEEE Symposium
on Computational Intelligence for Security and
Defense Applications (CISDA), 2009.

[6] “Nsl-kdd data set for network-based intrusion

detection systems.” Available on:
http://nsl.cs.unb.ca/NSL-KDD/, March 2009.

[7] Elkan, Charles, “Results of the KDD’99
classifier learning”, SIGKDD Explorating, 2000.

 [8] L. G. Valiant, “A theory of the learnable”,
Communications of the ACM, 27(11):1134–
1142, November 1984.

[9] Yoav Freund and Robert E. Schapire, “A decision
theoretic generalization of on-line learning and
an application to boosting”, Journal of Computer
and System Sciences, 55(1):119–139, August
1997.

[10] W. Hu and W. M. Hu, “HIGCALS: a hierarchical
Graph-theoretic clustering active learning
System”, in Proc. IEEE Int. Conf. Syst., Man,
Cybern, 2006, vol. 5, pp. 3895–3900.

[11] Dorothy E.Denning,”An, “An Intrusion-
Detection Model”, IEEE Transactions on
Software Engineering, Volume SE-13, No. 2,
February 1987, pp. 222-232.

[12] G. Vigna and R. A. Kemmerer, “NetSTAT: A
network-based intrusion detection approach”, in
Proceedings of Computer Security Applications
Conference, December. 1998, pp. 25– 34.

[13] W. Lee, S. J. Stolfo and K. Mok, “A data mining
Framework for building intrusion detection
Models”, in Proceedings of IEEE Symposium
on Security and Privacy, May 1999, pp. 120–
132.

[14] K. Sequeira and M. Zaki, “Admit: Anomaly-
Based Data Mining for Intrusions”, in
Proceedings of the eighth ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining, ACM Press, 2002,
pp. 386.395.

